Vibration Analysis of a Nonlinear Beam Under Axial Force by Homotopy Analysis Method

Authors

  • A.A Motallebi Department of Mechanical Engineering, Imam Hossein University
  • J Sheikhi Civil Engineering, Imam Hossein University
  • M Poorjamshidian Department of Mechanical Engineering, Imam Hossein University
Abstract:

In this paper, Homotopy Analysis Method is used to analyze free non-linear vibrations of a beam simply supported by pinned ends under axial force. Mid-plane stretching is also considered for dynamic equation extracted for the beam. Galerkin decomposition technique is used to transform a partial dimensionless nonlinear differential equation of dynamic motion into an ordinary nonlinear differential equation. Then Homotopy Analysis Method is employed to obtain an analytic expression for nonlinear natural frequencies. Effects of design parameters including axial force and slenderness ratio on nonlinear natural frequencies are studied. Moreover, effects of factors of nonlinear terms on the general shape of the time response are taken into account. Combined Homotopy-Pade technique is used to reduce the number of approximation orders without affecting final accuracy. The results indicate increased speed of convergence as Homotopy and Pade are combined. The obtained analytic expressions can be used for a vast range of data. Comparison of the results with numerical data indicated a good conformance. Having compared accuracy of this method with that of the Homotopy perturbation analytic method, it is concluded that Homotopy Analysis Method is a very strong method for analytic and vibration analysis of structures.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

full text

Nonlinear Vibration Analysis of a cantilever beam with nonlinear geometry

Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...

full text

Free Vibration Analysis of a Nonlinear Beam Using Homotopy and Modified Lindstedt-Poincare Methods

In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differ...

full text

Nonlinear Vibration Analysis of the Beam Carrying a Moving Mass Using Modified Homotopy

In the present study, the analysis of nonlinear vibration for a simply-supported flexible beam with a constant velocity carrying a moving mass is studied. The amplitude of vibration assumed high and its deformation rate is assumed slow. Due to the high amplitude of vibrations, stretching is created in mid-plane, resulting in, the nonlinear strain-displacement relations is obtained, Thus, Nonlin...

full text

Physical Nonlinear Analysis of a Beam Under Moving Harmonic Load

A prismatic beam made of a behaviorally nonlinear material is analyzed under aharmonic load moving with a known velocity. The vibration equation of motion is derived usingHamilton principle and Euler-Lagrange Equation. The amplitude of vibration, circular frequency,bending moment, stress and deflection of the beam can be calculated by the presented solution.Considering the response of the beam,...

full text

Nonlinear Nonlocal Vibration of an Embedded Viscoelastic Y-SWCNT Conveying Viscous Fluid Under Magnetic Field Using Homotopy Analysis Method

In the present work, effect of von Karman geometric nonlinearity on the vibration characteristics of a Y-shaped single walled carbon nanotube (Y-SWCNT) conveying viscose fluid is investigated based on Euler Bernoulli beam (EBB) model. The Y-SWCNT is also subjected to a longitudinal magnetic field which produces Lorentz force in transverse direction. In order to consider the small scale effects,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  289- 298

publication date 2014-09-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023